• Latest
  • Trending
AI Reveals Dozens of New Human Cell Components

AI Reveals Dozens of New Human Cell Components

December 3, 2021
ATC Ghana supports Girls-In-ICT Program

ATC Ghana supports Girls-In-ICT Program

April 25, 2023
Vice President Dr. Bawumia inaugurates  ICT Hub

Vice President Dr. Bawumia inaugurates ICT Hub

April 2, 2023
Co-Creation Hub’s edtech accelerator puts $15M towards African startups

Co-Creation Hub’s edtech accelerator puts $15M towards African startups

February 20, 2023
Data Leak Hits Thousands of NHS Workers

Data Leak Hits Thousands of NHS Workers

February 20, 2023
EU Cybersecurity Agency Warns Against Chinese APTs

EU Cybersecurity Agency Warns Against Chinese APTs

February 20, 2023
How Your Storage System Will Still Be Viable in 5 Years’ Time?

How Your Storage System Will Still Be Viable in 5 Years’ Time?

February 20, 2023
The Broken Promises From Cybersecurity Vendors

Cloud Infrastructure Used By WIP26 For Espionage Attacks on Telcos

February 20, 2023
Instagram and Facebook to get paid-for verification

Instagram and Facebook to get paid-for verification

February 20, 2023
YouTube CEO Susan Wojcicki steps down after nine years

YouTube CEO Susan Wojcicki steps down after nine years

February 20, 2023
Inaugural AfCFTA Conference on Women and Youth in Trade

Inaugural AfCFTA Conference on Women and Youth in Trade

September 6, 2022
Instagram fined €405m over children’s data privacy

Instagram fined €405m over children’s data privacy

September 6, 2022
8 Most Common Causes of a Data Breach

5.7bn data entries found exposed on Chinese VPN

August 18, 2022
  • Consumer Watch
  • Kids Page
  • Directory
  • Events
  • Reviews
Friday, 23 May, 2025
  • Login
itechnewsonline.com
  • Home
  • Tech
  • Africa Tech
  • InfoSEC
  • Data Science
  • Data Storage
  • Business
  • Opinion
Subscription
Advertise
No Result
View All Result
itechnewsonline.com
No Result
View All Result

AI Reveals Dozens of New Human Cell Components

by ITECHNEWS
December 3, 2021
in Data Science
0 0
0
AI Reveals Dozens of New Human Cell Components

  • UC San Diego team trained AI to construct a new model of the cell.
  • Model detects new protein communities and predicts their functions.
  • The technique revealed dozens of novel cell components.

A new study by UC San Diego researchers combined machine learning with protein imaging and biophysical association to create a map of subcellular components. The AI generated map, called Multi-Scale Integrated Cell (MuSIC), revealed 69 subcellular systems—around half of which are new, undocumented cell components. The technique, detailed in a November 24, 2021, article in Nature[1], resulted in a map that looks nothing like the cell diagrams in biology textbooks.

YOU MAY ALSO LIKE

5.7bn data entries found exposed on Chinese VPN

Introduction to Google Firebase: Firestore using Python

In the MuSIC image on the left, known cell components are in gold, new cell components are in purple, and arrows indicate containment of the lower system by the upper system. The system doesn’t map the cell component to a specific place, like those in the classic diagram on the right, partly because their locations are fluid, changing with cell type and situation [2]. In other words, the cell isn’t made up of neatly placed components suspended in intracellular fluid; there is a hierarchy of biological order,where a nested succession of processes determines the functional and spatial organization of cells [3].  

Traditional imaging research tends to focus on physical size and distances between cellular components, but this new AI-based research suggests that protein interactions can give a complementary measure of intracellular distance. [1] If you think of intercellular organization as being like a small city, a whole host of inputs make up a dynamic object that’s much more than buildings and streets. For example, people’s movements are a function of factors like rush hour traffic, social interactions, or weather. In the same way, the full features of cells can’t be accurately described by a two-dimensional map; they are governed by a myriad of complex biological processes that occur within the cell walls.

Combining Traditional Techniques and AI

Finding a bridge to span the gap from nanometer to micron scale had—up until this recent study—eluded researchers in the biological sciences. “Turns out you can do it with artificial intelligence,” says Trey Ideker, PhD, one of the study leaders, in a UCSD press release [2].

Cellular components are usually mapped with either biophysical association or microscope imaging. Both techniques have their limitations: super-resolution microscopes, which can see inside cells with resolution better than 250 nanometers [4] are limited by the wavelength of the electron beam [5]; biochemistry techniques can map structures further down the nanometer scale, but still can’t see cell structures on the micron level (one micron is  1/1000th of a nanometer).  The two approaches generate massive amounts of data with distinct qualities and resolutions that are usually analyzed separately [6]. With machine learning, the ability to analyze both sets of data comes into play. This new technique combines the traditional imaging methods with deep learning to map cell data from multiple sources, including cellular microscopy images. 

The Procedure

The study began with a matched dataset of immunofluorescence cell images, including human embryonic kidney cells with 661 proteins.  Deep neural networks embedded each protein and assigned them coordinates in reduced dimensions. Distances between the proteins was calculated and calibrated with a reference set of known cellular components of known or estimated diameter. A supervised ML model (random forest regression) was trained to estimate the distance of any protein pair from its embedded coordinates. After all the distances were analyzed, the MuSIC 1.0 hierarchy was created, with 69 protein communities—54% of which had never been categorized before.

The Future of Cell Maps

Ideker noted this pilot study looked at just 661 proteins from one cell type. The map is being developed to cover all human proteins, a huge task that may result in a unified map of cellular components or in separate maps for different cell types. Identification of new protein communities brings more promise to the hope of curing cancer and other diseases that start at the intercellular level. “Eventually we might be able to better understand the molecular basis of many diseases,” Ideker said, “…by comparing what’s different between healthy and diseased cells” [2].

ShareTweetShare
Plugin Install : Subscribe Push Notification need OneSignal plugin to be installed.

Search

No Result
View All Result

Recent News

ATC Ghana supports Girls-In-ICT Program

ATC Ghana supports Girls-In-ICT Program

April 25, 2023
Vice President Dr. Bawumia inaugurates  ICT Hub

Vice President Dr. Bawumia inaugurates ICT Hub

April 2, 2023
Co-Creation Hub’s edtech accelerator puts $15M towards African startups

Co-Creation Hub’s edtech accelerator puts $15M towards African startups

February 20, 2023

About What We Do

itechnewsonline.com

We bring you the best Premium Tech News.

Recent News With Image

ATC Ghana supports Girls-In-ICT Program

ATC Ghana supports Girls-In-ICT Program

April 25, 2023
Vice President Dr. Bawumia inaugurates  ICT Hub

Vice President Dr. Bawumia inaugurates ICT Hub

April 2, 2023

Recent News

  • ATC Ghana supports Girls-In-ICT Program April 25, 2023
  • Vice President Dr. Bawumia inaugurates ICT Hub April 2, 2023
  • Co-Creation Hub’s edtech accelerator puts $15M towards African startups February 20, 2023
  • Data Leak Hits Thousands of NHS Workers February 20, 2023
  • Home
  • InfoSec
  • Opinion
  • Africa Tech
  • Data Storage

© 2021-2022 iTechNewsOnline.Com - Powered by BackUPDataSystems

No Result
View All Result
  • Home
  • Tech
  • Africa Tech
  • InfoSEC
  • Data Science
  • Data Storage
  • Business
  • Opinion

© 2021-2022 iTechNewsOnline.Com - Powered by BackUPDataSystems

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
Go to mobile version