• Latest
  • Trending
4 Reasons Why You Shouldn’t Use Machine Learning

4 Reasons Why You Shouldn’t Use Machine Learning

December 30, 2021
Inaugural AfCFTA Conference on Women and Youth in Trade

Inaugural AfCFTA Conference on Women and Youth in Trade

September 6, 2022
Instagram fined €405m over children’s data privacy

Instagram fined €405m over children’s data privacy

September 6, 2022
8 Most Common Causes of a Data Breach

5.7bn data entries found exposed on Chinese VPN

August 18, 2022
Fibre optic interconnection linking Cameroon and Congo now operational

Fibre optic interconnection linking Cameroon and Congo now operational

July 15, 2022
Ericsson and MTN Rwandacell Discuss their Long-Term Partnership

Ericsson and MTN Rwandacell Discuss their Long-Term Partnership

July 15, 2022
Airtel Africa Purchases $42M Worth of Additional Spectrum

Airtel Africa Purchases $42M Worth of Additional Spectrum

July 15, 2022
Huawei steps up drive for Kenyan talent

Huawei steps up drive for Kenyan talent

July 15, 2022
TSMC predicts Q3 revenue boost thanks to increased iPhone 13 demand

TSMC predicts Q3 revenue boost thanks to increased iPhone 13 demand

July 15, 2022
Facebook to allow up to five profiles tied to one account

Facebook to allow up to five profiles tied to one account

July 15, 2022
Top 10 apps built and managed in Ghana

Top 10 apps built and managed in Ghana

July 15, 2022
MTN Group to Host the 2nd Edition of the MoMo API Hackathon

MTN Group to Host the 2nd Edition of the MoMo API Hackathon

July 15, 2022
KIOXIA Introduce JEDEC XFM Removable Storage with PCIe/NVMe Spec

KIOXIA Introduce JEDEC XFM Removable Storage with PCIe/NVMe Spec

July 15, 2022
  • Consumer Watch
  • Kids Page
  • Directory
  • Events
  • Reviews
Wednesday, 8 February, 2023
  • Login
itechnewsonline.com
  • Home
  • Tech
  • Africa Tech
  • InfoSEC
  • Data Science
  • Data Storage
  • Business
  • Opinion
Subscription
Advertise
No Result
View All Result
itechnewsonline.com
No Result
View All Result

4 Reasons Why You Shouldn’t Use Machine Learning

by ITECHNEWS
December 30, 2021
in Data Science, Leading Stories
0 0
0
4 Reasons Why You Shouldn’t Use Machine Learning

Introduction

When machine learning initially emerged, many speculated that it would spark another industrial revolution. Fast forward to today and many would say that it’s nothing more than a buzzword.

Don’t get me wrong. Machine learning is a useful tool, but it’s nothing more than that. And it’s a stretch to say that it’s anything like a swiss army knife — I’d think of it more like a water jet (something rather niche).

YOU MAY ALSO LIKE

Inaugural AfCFTA Conference on Women and Youth in Trade

Instagram fined €405m over children’s data privacy

From my experiences, there are certainly a number of applications where machine learning shines. For example, Amazon’s recommendation system increased sales by over 30%. However, there are a greater number of applications where machine learning is a suboptimal solution.

In this article, we’re going to go over 4 reasons why you shouldn’t use machine learning.

With that said, let’s dive into it!

 

1. Data-related issues

As seen in the AI hierarchy of needs, machine learning relies on several other factors that serve as a foundation. This foundation encompasses everything from collecting data, storing data, moving data, and transforming data. It’s important that you have a robust process that achieves these preliminary steps or it’ll be less likely that you have reliable data.

Why is this so important? You’ve heard of the saying “garbage in, garbage out” — the performance of your machine learning models are limited by the quality of your data, which is why it’s so important that you have reliable data to start with.

Not only do you need your data to be reliable, but you need enough data to leverage the power of machine learning. Without these two criteria checked out, you won’t be able to get the full power of ML.

 

2. Interpretability

There are two general categories of models: predictive models and explanatory models:

  • Predictive models solely focus on the model’s ability to produce accurate predictions.
  • Explanatory models focus more on understanding the relationships between the variables in the data.

Machine Learning models, particularly ensemble learning models and neural networks, are predictive models — they are excellent at formulating predictions and far exceed the predictive power of traditional models like linear/logistic regression.

That being said, when it comes to understanding the relationships between the predictive variables and the target variable, these models are a black box. While you may understand the underlying mechanics behind these models, it’s still not very clear how they get to their final results.

And while some techniques like feature importance and correlation matrices exist, they are still quite limited in understanding relationships in your data. Overall, ML and deep learning are great for prediction, but lack in explainability.

 

3. Technical Debt

Maintaining machine learning models over time is challenging and expensive. Particularly, there are several types of “debt” to consider when maintaining machine learning models:

  • Dependency debt: Dependency debt refers to the debt incurred from unstable data dependencies and underutilized data dependencies. In simpler terms, this refers to the cost of maintaining multiple versions of the same model, legacy features, and underutilized packages.
  • Analysis debt: This refers to the idea that ML systems often end up influencing their own behavior if they update over time, resulting in direct and hidden feedback loops.
  • Configuration debt: The configuration of machine learning systems themselves also incur a debt similar to any software system. It should be easy to make small configurations, it should be hard to make manual errors, and it should be easy to see the difference between different models.

 

4. Better Alternatives

Lastly, machine learning shouldn’t be used when simpler alternatives exist that are equally as effective. In my previous article, “Want to be a Data Scientist, Don’t Start with Machine Learning,” I emphasized the point that machine learning is not the answer to every problem.

A simple solution that takes 1 week to build that is 90% accurate will almost always be chosen over a machine learning model that takes 3 months to build that is 95% accurate.

Ideally, you should start with the simplest solution that you can implement and iteratively determine if the marginal benefits from the next best alternative outweighs the marginal costs.

If you can solve your problem with a Python script or a SQL query, you should do that first. If you can solve your problem with a decision tree, you should do that first. If you can solve your problem with a linear regression model, you should do that first.

Source: Terence Shin, Data Scientist
Via: MSc Analytics & MBA student
Tags: Machine Learning
ShareTweetShare
Plugin Install : Subscribe Push Notification need OneSignal plugin to be installed.

Search

No Result
View All Result

Recent News

Inaugural AfCFTA Conference on Women and Youth in Trade

Inaugural AfCFTA Conference on Women and Youth in Trade

September 6, 2022
Instagram fined €405m over children’s data privacy

Instagram fined €405m over children’s data privacy

September 6, 2022
8 Most Common Causes of a Data Breach

5.7bn data entries found exposed on Chinese VPN

August 18, 2022

About What We Do

itechnewsonline.com

We bring you the best Premium Tech News.

Recent News With Image

Inaugural AfCFTA Conference on Women and Youth in Trade

Inaugural AfCFTA Conference on Women and Youth in Trade

September 6, 2022
Instagram fined €405m over children’s data privacy

Instagram fined €405m over children’s data privacy

September 6, 2022

Recent News

  • Inaugural AfCFTA Conference on Women and Youth in Trade September 6, 2022
  • Instagram fined €405m over children’s data privacy September 6, 2022
  • 5.7bn data entries found exposed on Chinese VPN August 18, 2022
  • Fibre optic interconnection linking Cameroon and Congo now operational July 15, 2022
  • Home
  • InfoSec
  • Opinion
  • Africa Tech
  • Data Storage

© 2021-2022 iTechNewsOnline.Com - Powered by BackUPDataSystems

No Result
View All Result
  • Home
  • Tech
  • Africa Tech
  • InfoSEC
  • Data Science
  • Data Storage
  • Business
  • Opinion

© 2021-2022 iTechNewsOnline.Com - Powered by BackUPDataSystems

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
Go to mobile version